Gröbner Bases and Normal Forms in a Subring of the Power Series Ring on Countably Many Variables

نویسنده

  • Jan Snellman
چکیده

If K is a field, let the ring R′ consist of finite sums of homogeneous elements in R = K[[x1, x2, x3, . . .]]. Then, R′ contains M, the free semi-group on the countable set of variables {x1, x2, x3, . . .}. In this paper, we generalize the notion of admissible order from finitely generated sub-monoids of M to M itself; assume that > is such an admissible order on M. We show that we can define leading power products, with respect to >,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grr Obner Bases and Normal Forms in a Subring of the Power Series Ring on Countably Many Variables

If K is a eld, let the ring R 0 consist of nite sums of homogeneous elements in R = Kx 1 ; x 2 ; x 3 ; : : : ]]. Then, R 0 contains M, the free semi-group on the countable set of variables fx 1 ; x 2 ; x 3 ; : : :g. In this paper, we generalize the notion of admissible order from nitely generated sub-monoids of M to M itself; assume that > is such an admissible order on M. We show that we can d...

متن کامل

Gröbner bases for the polynomial ring with infinite variables and their applications

We develop the theory of Gröbner bases for ideals in a polynomial ring with countably infinite variables over a field. As an application we reconstruct some of the one-one correspondences among various sets of partitions by using division algorithm.

متن کامل

Some Properties of a Subring of the Power Series Ring on a Countably Innnite Number of Variables over a Eld

We prove some simple properties of the power series ring R = Kx 1 ; x 2 ; x 3 ; : : : ]] on a countably innnite number of variables over a eld K, and of the subring R 0 generated by all homogeneous elements in R. By means of a certain decreasing ltration of ideals, which are kernels of the \truncation homomorphisms" n : R 0 ! Kx 1 ; : : : ; x n ], we endow R 0 with a topology, and show that wit...

متن کامل

On Non-homogeneous Ideals in a Subring of the Power Series Ring on a Countably Infinite Number of Variables over a Field

We extend a result from 5], namely that locally nitely generated ideals in the ring R 0 are closed, to show that a (non-homogeneous) ideal I in R 0 , whose associated homogeneous ideal gr T (I) is locally nitely generated, is closed. Furthermore, we prove analogous results to some of the \approximation results" of 4], for non-homogeneous ideals.

متن کامل

Noncommutative Gröbner Bases for the Commutator Ideal

Let I denote the commutator ideal in the free associative algebra on m variables over an arbitrary field. In this article we prove there are exactly m! finite Gröbner bases for I , and uncountably many infinite Gröbner bases for I with respect to total division orderings. In addition, for m = 3 we give a complete description of its universal Gröbner basis. Let A be a finite set and let K be a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 1998